1. Closure
- 정의) A set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique elements of S
2. Associate law(결합법칙)
- (x*y)*z=x*(y*z) for all x,y,z∈S
3. Commutative law(교환법칙)
- x*y=y*x for all x,y∈S
4. Identity elements(항등원)
- for all x∈S, e*x=x*e=x
5. Inverse(역원)
- for all x∈S , exists y∈S, such that x*y=e
이때의 y를 x의 inverse(역원)이라 한다.
6. Distributive law(분배법칙)
- (a) x(y+z) = xy+xz
(b) x+yz=(x+y)(x+z)
- (b) 식이 와닿지 않아서 증명해보았다.
(x+y)(x+z) = xx+xz+yx+yz
= x+xz+yx+yz
= x(1+z) + yx+yz
= x+yx+yz <1+z = 1>
= x(1+y)+yz
= x+yz
'Computer Science > Digital circuit' 카테고리의 다른 글
[Digital circuit] notepad++ - verilog 에러 : No such file or directory No top level modules, and no -s option (2) | 2021.04.14 |
---|---|
[Digital Circuit] Minterm(최소항) & Maxterm(최대항) (2) | 2021.04.11 |